to signals at δ 2.1 (m, 4, CH₂) and 2.8 (m, 8, CH₂S) assigned to DTC- $O_{4}^{4cc} \delta 2.25 \text{ (m, 4, CH}_2\text{)}, 2.65 \text{ (m, 4, CH}_2\text{S)}, \text{ and } 3.15 \text{ (m, 4, CH}_2\text{S}=O\text{)}$ assigned to DTCS,²⁵ and $\delta 7.7 \text{ (m, 10, CH)}$ assigned to BP. Benzpinacol, δ 7.2 (m, 20, CH), was prepared independently by irradiation of BP in isopropyl alcohol.

The peroxidase method⁵⁰ was used to determine the presence of H_2O_2 in samples which had been irradiated in the presence of oxygen. Quantities from 1 to 200 µL of sample were added to a 10-mL solution containing 0.1 mg of peroxidase, 3 mM leuco crystal violet, and 0.2 M acetate buffer at pH 5. The presence of H_2O_2 causes a dark blue color to form (crystal violet). Control solutions easily detected microgram quantities of H_2O_2 in CH_3CN solutions. As an important control, the reaction of DTCO and H₂O₂ was inspected. NMR analysis showed that addition of 30% H_2O_2 solution (40 μ L) to 0.5 mL of 0.5 M DTCO in 80% CD₃CN/D₂O resulted in 50% conversion to DTCS within 60 min.

Quantum Yield Determinations. Quantum yields of photobleaching were determined by measuring the absorption spectrum of the sensitizer as a function of irradiation time. Δ [Sens] was measured by determining $\epsilon_{334}(BP) = 140$ in (80% CH₃CN/H₂O). The number of photons incident on the sample was determined by using a quantum counter (Rhodamine B fluorescence in ethanol) to absorb a small, constant percentage of the incident light from a 500-W mercury lamp which had passed through a monochromator. The apparatus has been previously described.⁴⁹ The system was calibrated by ferrioxalate actinometry. Benzophenone samples were irradiated and monitored at $\lambda = 334$ nm. Quantum yields were obtained from the slope of a plot of Δ [Sens] vs. einsteins absorbed and extrapolated to zero time to correct for the change in the light absorbed as the sensitizer bleached.

(50) Mottola, H. A.; Simpson, B. E.; Gorin, G. Anal. Chem. 1970, 42, 410.

Quantum yields of I_3^- production were determined with the same quantum counting apparatus described above. Solutions containing 20 mM DTCO, 10 mM I⁻, and 10 mM BP in 80% CH₃CN/H₂O were irradiated at $\lambda_{exc} = 334$ nm for periods of 1 to 30 min while O₂ was continually bubbled through a portion of the solution which was not directly irradiated. The concentration of triiodide was determined by measuring ΔOD_{400} , a wavelength at which BP does not absorb. The molar absorptivity, $\epsilon(I_3^-) = 3.71 \times 10^3 M^{-1} cm^{-1}$, was determined in the same solvent system. Corrections were made for the competitive absorbance of the photoproduct, I_3^-

The quantum yields for sulfoxide production in the presence of oxygen were determined by monitoring the decrease in [DTCO] and the increase in [DTCS] by NMR as a function of irradiation time for samples in which [BP] = 50 mM and [DTCO] = 50 mM in 80% CD₃CN/D₂O (λ_{exc} = 334 nm), with oxygen continuously bubbling through the cell during the experiment. An identical experiment was performed with 8 mM BP and 200 mM DTCO in order to monitor the photobleaching of BP after prolonged irradiation under oxygen and to calculate a turnover number (mol of BP consumed/mol of DTCS formed).

Acknowledgment. Support of this research by the Department of Energy, Office of Basic Energy Sciences, is gratefully acknowledged. We thank Professors W. K. Musker and R. S. Glass for helpful discussions and for providing information prior to publication and also Professors M. Z. Hoffman and K. D. Asmus for their advice and suggestions.

Registry No. UO₂²⁺, 16637-16-4; DTCO, 6572-95-8; benzophenone, 119-61-9; bracetyl, 431-03-8.

Communications to the Editor

Reactivity of Mixed Cyclometalated Palladium Compounds Containing the [2-Me₂NC₆H₄C(H)SiMe₃] Monoanion.¹ Transmetalation Reaction and Formation of a Novel µ-Alkylidene Compound (X-ray) Bis(μ -chloro)bis{ μ -C, σ -N-[2-(dimethylamino)benzylidene](µ-chloro)(diethyl sulfide)dipalladium(II)}

Fida Maassarani,^{2a} Michel Pfeffer,*^{2a} Anthony L. Spek,^{2b} Antoine M. M. Schreurs,^{2b} and Gerard van Koten*

> Laboratoire de Chimie de Coordination UA 416 CNRS Universite Louis Pasteur F-67070 Strasbourg Cédex, France Laboratorium voor Kristal- en Structuurchemie University of Utrecht 3508 TB Utrecht, The Netherlands Anorganisch Chemisch Laboratorium University of Amsterdam, Nieuwe Achtergracht 166 1018 WV Amsterdam, The Netherlands Received January 3, 1986

The chemistry of metal complexes containing μ -methylene (or μ -alkylidene) bridges is a rapidly growing field^{3a} with the number of possible synthetic routes to these complexes still increasing.^{3b} It was found that in order to get stable Pd_2 - and Pt_2 - μ -methylene compounds the absence of a stabilizing metal-to-metal bond had to be compensated for by the use of bridging R₂PCH₂PR₂ ligands.4.5

The study reported here involves reactions of mixed cyclometalated compounds Pd[2-Me₂NC₆H₄CH(SiMe₃)](dmba) (1, dmba is $2-Me_2NCH_2C_6H_4$) with $PdCl_2(SR_2)_2$. Depending on the nature of the SR_2 ligand these reactions provide either transmetalation products or a novel type of dimeric μ -alkylidene dipalladium compound $\{Pd_2(\mu-Cl)(\mu'-Cl)(SEt_2) [(CHC_6H_4NMe_2-2)]_2$ (2). Interesting features of these reactions are (i) the novel way in forming the alkylidene fragment which involves overall 1,2-Me₃SiCl elimination, (ii) the stability of the μ -alkylidene compound 2 in which specific bridging ligands (see above) are absent, and (iii) the influence of the coligand SR_2 on the reaction course.

Reaction of 1^{6a} with *trans*-PdCl₂(SEt₂)₂^{6b} (1:1 molar ratio) in boiling CHCl₃ or toluene afforded in addition to PdCl(dmba)-(SEt₂) and [PdCl(dmba)]₂ (30% yield calculated on dmba) a red crystalline product 2, which was isolated from the reaction mixture in 26% yield (recrystallization from CH_2Cl_2 /pentane). FD mass spectrometry, elemental analytical, and ¹H and ¹³C NMR spectrometric⁷ data indicated a $Pd_2Cl_2(SEt_2)[(C(H)C_6H_4NMe_2-2)]$

0002-7863/86/1508-4222\$01.50/0 © 1986 American Chemical Society

⁽¹⁾ Part 2. For part 1, see: Maassarani, F.; Pfeffer, M.; Le Borgne, G.; Wehman, E.; van Koten, G. J. Am. Chem. Soc. 1984, 106, 8002

^{(2) (}a) Strasbourg, France. (b) Utrecht, The Netherlands. (c) Amster-

<sup>dam, The Netherlands.
(3) (a) Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159. Pinhas,
A. R.; Albright, T. A.; Hofmann, P.; Hoffmann, R. Helv. Chim. Acta 1980,</sup> 63, 29. (b) Cf. Figure 9, in: Herrmann, W. A. J. Organomet. Chem. 1983, 250, 319.

⁽⁴⁾ Brown, M. P.; Fisher, J. R.; Puddephatt, R. J.; Seddon, K. R. Inorg. Chem. 1979, 18, 2808. Balch, A. L.; Hunt, C. T.; Lee, C.-L.; Olmstead, M. M.; Farr, J. P. J. Am. Chem. Soc. 1981, 103, 3764.

⁽⁵⁾ Arnould, D. P.; Bennett, M. A.; McLaughlin, G. M.; Robertson, G. B.; Whittaker, M. J. J. Chem. Soc., Chem. Commun. 1983, 32 and 34. (6) (a) Maassarani, F.; Pfeffer, M.; Le Borgne, G.; van Koten, G.; Jas-trzebski, J. T. B. H., manuscript in preparation. (b) With *trans*-PdCl₂(SPr₂)₂

the corresponding μ -benzylidene compound {Pd₂(μ -Cl)(μ '-Cl)(SPr₂)-[(CHC₆H₄NMe₂-2)]}₂ is formed. (7) ¹H NMR of 2 (CDCl₃, Me₄Si internal): δ NMe₂ 3.03, 3.44 and 3.06, 3.44; CH 5.96 and 5.94; SCH₂ 2.3 m; CH₃ 1.24 (mole ratio diastereomers 3:2). ¹³C NMR (CDCl₃, Me₄Si internal): δ NMe₂ 53.7 and 53.3; CH 76.7; SCH₂ 3.7 CM

SCH₂ 30.7; CH₃ 13.2.

⁽⁸⁾ The structure was solved by Patterson and Fourier methods (SHELX 84) and refined (SHELX 76) with anisotropic thermal parameters of the non-hydrogen atoms to R = 0.042, $R_{wF} = 0.0497$, w = 1. Hydrogen atoms were introduced on calculated positions. A disorder model was used to include CH₂Cl₂ molecules on 0,0,0 and 0,0,¹/₂ positions. Full details will be given elsewhere.

Figure 1. Molecular structure of 2. Some relevant bond lengths (Å): Pd(1)-C(7) 1.94 (2), Pd(2)-C(7) 2.02 (2), Pd(1)-Cl(1) 2.328 (5), Pd(2)-Cl(1) 2.496 (4), Pd(1)-Cl(2') 2.492 (5), Pd(2)-Cl(2) 2.480 (5), Pd(1)·Pd(2) 2.780 (2), C(6)-C(7) 1.49 (2), Pd(1)-N 2.09 (1), Pd(2)-S 2.293 (4). Some relevant bond angles (deg): Cl(1)-Pd(1)-Cl(2) 96.4 (2), Cl(1)-Pd(1)-N 167.6 (4), Cl(1)-Pd(1)-C(7) 84.2 (4), Cl(2')-Pd-(1)-C(7) 178.7 (5), Pd(1)-Cl(1)-Pd(2) 70.3 (1), Pd(1)-C(7)-Pd(2) 89.1 (7), Pd(1)-C(7)-C(6) 113 (1), Pd(1)-N-C(1) 109 (1), Cl(2')-Pd(2) 89.1 (7), Pd(1)-C(7) 84.8 (6), Pd(2)-C(7)-C(6) 123 (1), C(7)-Pd-(2)-S 3.6 (4), C(7)-Pd(2)-Cl(2) 167.3 (4), Cl(1)-Pd(2)-S 167.9 (2), Cl(1)-Pd(2)-Cl(2) 90.6 (2). Atoms related by inversion symmetry have been dashed.

stoichiometry, i.e., the isolation of a product in which the SiMe₃ grouping was no longer present.

The preliminary data of an X-ray diffraction analysis⁸ of **2** established the above stoichiometry and showed this compound to be a novel type of μ -alkylidene metal complex. Crystal data $(C_{13}H_{21}Cl_2NPd_2S)_{2'}^2/_3CH_2Cl_2$: trigonal space group $R\overline{3}$, a = b = 20.485 (4) Å, c = 22.951 (2) Å, U = 8341 (2), Z = 9, $D_c = 1.918$ g cm⁻³, μ (Mo K α) = 23.8 cm⁻¹, 1550 observed [$I \ge 2.5\sigma(I)$] intensities (Enraf-Nonius CAD4F diffractometer) with $\theta \le 22^{\circ}$ ($\omega/2\theta$ scan).

The dimeric molecule (Figure 1), which has inversion symmetry, contains two dinuclear μ -benzylidene units bridged by Cl atoms of different units thus forming an almost planar Pd₂(μ -Cl)₂Pd₂ arrangement. The dinuclear unit consists of two approximately planar coordinated Pd atoms (angle between these planes is 65.8 (3)°) which are unsymmetrically bridged (vide infra) by both the benzylidene C atom, C(7), and one Cl atom, Cl(1). The Pd-(1)-C(7)-Pd(2) angle amounts to 89.1 (7)° which is a typical value for the internal angle at a μ -CHR bonded C-atom³ (C-H 1.06 (2) Å, the benzylidene H atom was located).

The ¹H and ¹³C NMR data for C(7)H, 5.95 and 76.7 ppm, respectively, are consistent with these values expected for a μ alkylidene group lacking a Pd-Pd bond.⁹ It is therefore interesting to observe that the Pd(1)···Pd(2) distance is surprisingly short (2.780 (2) Å) when compared to these distances in other Clbridged Pd₂ complexes in which the Pd···Pd separation is usually $\geq 3.20 \text{ Å}$.¹⁰ This short Pd···Pd distance in 2 may arise from the different ligand surroundings of Pd(1) and Pd(2) which give rise to different electron densities at these Pd atoms.¹² This may lead

^{*a*}(i) Boiling CH_2Cl_2 or toluene, tr-Pd $Cl_2(SR_2)_2$, R = Me, primary or secondary alkyl. (ii) Boiling CH_2Cl_2 or toluene, tr-Pd $Cl_2(SR_2)_2$, R = primary alkyl.

to a bonding scheme involving a $[(Et_2S)Cl(2)Pd(2)]^+$ unit which is σ bonded to a planar, 4-e-donating $\{[\mu-Cl(1)]Pd(1)C(7)\}^-$ unit via Cl(1) and C(7). The significantly shorter bridge bond of Cl(1) to Pd(1) than to Pd(2) may reflect either a stronger trans effect of the SEt₂ ligand compared to the NMe₂ grouping of 5^{11} (5 is CH(SiMe₃)C₆H₄NMe₂-2 anion) or that localized covalent Cl-(1)-Pd(1) and donative Cl(1)-Pd(2) bonds are present in this molecule. The angle at C(7) between C(6) and Pd(2) (123 (1)°) deviates much from the tetrahedral value for a sp³ hybridized C atom in contrast to the normal angle of 113 (1)° found with Pd(1). This may arise from the fact that C(7) is part of a five-atom chelate ring (cf. the relatively large¹³ bite angle of 84.8 (6)°).

Various observations indicate that the formation of 2 is connected to the transmetalation reactions of 1 with *trans*-PdCl₂- $(SR_2)_2$ because when R = Me or sec-alkyl exclusively the transmetalation products Pd(dmba)Cl (3)¹⁴ and Pd[CH- $(SiMe_3)C_6H_4NMe_2$ -2]Cl (4)¹⁴ are obtained, see Scheme I. The result of separate experiments confirmed the occurrence of steps i and ii: i.e., the 1:1 molar reaction of 4 with PdCl₂(SEt₂)₂ afforded 2 quantitatively, while moreover, the yield of isolated 2 increased to 43% in the 1:2 molar reaction of 1 with PdCl₂(SEt₂)₂.

A and A' (see Scheme I) are possible intermediates in the

transmetalation step, which involves electrophilic attack of a $(R_2S)Cl_2Pd$ entity on the benzylic (or aromatic, A')¹⁵ carbon atom, an attack which is assisted by the formation of a μ -Cl bridge. A possible rationale for the formation of the μ -benzylidene compound 2 is attack of $(Et_2S)Cl_2Pd^{16a}$ on the benzylic carbon atom in 4, which must occur from the side opposite to the SiMe₃ group.¹⁷ Movement of the NMe₂ ligand trans to the attacking Cl atom

⁽⁹⁾ This tetranuclear structure of 2 is retained in solution. ¹H NMR data show by the diastereotopism of the NMe₂ grouping that the μ -benzylidene C atom is a stable chiral center, while the fact that two resonance patterns are observed in ¹H NMR spectrum (see ref 7) point to the formation of two diastereometric pairs (SS/RR and SR/RS).

⁽¹⁰⁾ See, for instance: Barr, N.; Dyke, S. F.; Smith, G.; Kennard, C. H. L.; McKee, V. J. Organomet. Chem. 1985, 288, 109. Pfeffer, M.; Fischer, J.; Mitschler, A. Organometallics 1984, 3, 1531. Braunstein, P.; Matt, D.; Dusausy, Y.; Fischer, J.; Mitschler, A.; Ricard, L. J. Am. Chem. Soc. 1981, 103, 5115.

 ⁽¹¹⁾ Note, however, that in cis-Pd(NH₂CH(COOH)CH₂CH₂SMe)Cl₂
 the two Pd-Cl bonds are nearly equal: Warren, R. C.; McConnell, J. F.;
 Stephenson, N. C. Acta Crystallogr., Sect. B 1970, B26, 1402.
 (12) A comparable situation has been met in the structure of [(dmba)-

⁽¹²⁾ A comparable situation has been met in the structure of [(dmba)-Pd- μ -{C(CF₃)=C(CF₃)C(CF₃)=C(CF₃)}Pd(5)] with a Pd•••Pd of 2.756 (1) Å.¹

⁽¹³⁾ Generally such bite angles are in the range of $76-83^{\circ}$.^{10,17}

⁽¹⁴⁾ As the monomer with a coordinated SR_2 ligand or the Cl-bridged dimer. The latter product is present exclusively when the reaction mixture is worked up.

⁽¹⁵⁾ In both cases the same transmetalation products are formed. (16) (a) Or (Pr₂S)Cl₂Pd in the case of the formation of {Pd₂(μ-Cl)(μ'-Cl)(SPr₂)[(C(H)C₆H₄NMe₇-2)]}.^{6b} (b) In such an intermediate both Me₅Si and one Cl are at the same side of the cyclometalated ring in particular when the Pd center is five-coordinate.

 ⁽¹⁷⁾ In the five-membered chelate ring MCH(SiMe₂)C₆H₄NMe₂-2 the bulky SiMe₃ group is in axial position thus screening effectively one side of the metallocycle from attack, cf. the structures of SnMePhBr(5),^{17b} Pd-(5)[C₆H₄CH(Me)NMe₂-2-(S)],^{6a}, and PtCl(5)(SEt₂).^{17c} (b) Jastrzebski, J. T. B. H.; van Koten, G.; Knaap, C. T.; Schreurs, A. M. M.; Kroon, J.; Spek, A. L. Organometallics, in print. (c) An X-ray structure confirmed the cis arrangement of the NMe₂ and Cl ligands: Wehman, E. Ph.D. Thesis, 1986, Amsterdam.

then provides intermediate B (Scheme I) from which Me₃Si⁺ and Cl⁻ can easily eliminate^{16b} to form 2.

The mechanistic details of these reactions comprising particularly the crucial role of the R_2S coligand are investigated currently because, when understood,¹⁸ this synthetic route may provide an interesting new entry into the synthesis of new types of μ alkylidene-Pd compounds.

Acknowledgment. Dr. A. J. M. Duisenberg is thanked for the data collection of 2. These investigations were supported in part by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO) (to A.L.S.). The CNRS is thanked for financial support (to G.v.K. and F.M.).

Supplementary Material Available: Final values of refined positional and thermal parameters and an ORTEP view of 2 (40% probability) (2 pages). Ordering information is given on any current masthead page.

(18) In intermediate B the SR₂ group must be present because of the influence this coligand exerts on the product formation (see Scheme I).

Formation of Fe-Os, Fe-Ru, and Fe-Co Bimetallic Particles by Thermal Decomposition of Heteropolynuclear Clusters Supported on a Partially **Dehydroxylated Magnesia**

A. Choplin,* L. Huang, A. Theolier, P. Gallezot, and J. M. Basset*

> Institut de Recherches sur la Catalyse Conventionné à l'Université Claude Bernard Lyon I, 69626 Villeurbanne Cédex, France

U. Siriwardane and S. G. Shore*

Department of Chemistry, The Ohio State University Columbus, Ohio 43210

R. Mathieu

Laboratoire de Chimie de Coordination du CNRS Associé à l'Université Paul Sabatier 31400 Toulouse, France Received December 12, 1985

Bimetallic systems represent an important class of heterogeneous catalysts.^{1,2} So far, most of the methods of preparation were mainly based on coimpregnation, ion-exchange, or coprecipitation techniques, which require high-temperature reduction of two metal salts adsorbed on an oxide support.

Recently, heteropolynuclear molecular clusters have been used as precursors of hypothetical bimetallic particles, which exhibited, in some cases, unusual catalytic properties in various kinds of reactions.³⁻¹² However, interpretation of the results was made

(9) Shapley, J. R.; Hardwick, S. J.; Foose, D. S.; Stucky, G. D.; Churchill, R.; Bueno, Cl.; Hutchinson, J. P. J. Am. Chem. Soc. 1981, 103, 7383-7385.

Figure 1. Fe-Co cluster issued from the decomposition of HFeCo₃-(CO)₁₂/MgO at 500 °C under H₂: (a) TEM view of Fe-Co/MgO (500 000 magnification); (b) EDS spectrum of a 20-Å Fe–Co cluster (arrowed on (a)), taken with a 10 Å \times 10 Å analysis window in the STEM VGHB 501 equipped with a Tracor EDX analyzer. The quantitative analysis from Fe K α and Co K α emission peak gives a ratio $Co/Fe = 3.0 \pm 0.4$ (Cu Ka peak corresponds to the copper grid supporting the sample).

17/91M FEDOMG500 19

difficult due to the lack of information regarding the real nature of the particles (size, surface, and bulk composition).

We wish to report here that with H₂FeOs₃(CO)₁₃, H₂FeRu₃-(CO)13, and HFeCo3(CO)12 supported on a partially hydroxylated magnesia, it is possible to obtain, after H2 treatment at 400 °C, very small bimetallic particles, having the same bulk composition as that of the starting heteropolynuclear precursor cluster. This conclusion is based on high spatial resolution analytical microscopy.

The magnesia (100 m²/g) was treated under O_2 for 10 h at 400 °C, evacuated at 400 °C under vacuum (10⁻⁵ torr), equilibrated with H₂O (25 torr) at 25 °C for 16 h, and then evacuated at 200 °C (16 h, 10-5 torr).

H₂FeOs₃(CO)₁₃, H₂FeRu₃(CO)₁₃, and HFeCo₃(CO)₁₂ were prepared according to known procedures.¹³⁻¹⁵ The clusters were chemisorbed on magnesia from CH₂Cl₂ solutions. It has been

0002-7863/86/1508-4224\$01.50/0 © 1986 American Chemical Society

⁽¹⁾ Sinfelt, J. H. J. Catal. 1973, 29, 308-315.

⁽²⁾ Clarke, J. K. A.; Creaner, A. C. M. Ind. Eng. Chem. Prod., Res. Div. 1981, 20, 574-593.

⁽³⁾ Ichikawa, M. J. Catal. 1979, 59, 67-78.

⁽⁴⁾ Anderson, J. R.; Elmes, P. S.; Howe, R. F.; Mainwaring, D. E. J. Catal. 1977, 50, 508-518.

⁽⁵⁾ Choplin, A.; Leconte, M.; Basset, J. M.; Hsu, W. L.; Shore, S. G. J. Mol. Catal. 1983, 21, 389-391.

⁽⁶⁾ Moggi, P.; Albanesi, G.; Predieri, G.; Sappa, E. J. Organomet. Chem. 1983, 252, C89-C92

⁽⁷⁾ Hemmerich, R.; Keim, W.; Röper, M. J. Chem. Soc., Chem. Commun. 1983, 428-430.

 ⁽⁸⁾ Vanhove, D.; Makambo, L.; Blanchard, M. J. Chem. Res., Synop.
 1980, 335; J. Chem. Res. 1980, 4121–4132.

⁽¹⁰⁾ Kuznetsov, V. L.; Danilyuk, A. F.; Kolosova, I. E.; Yermakov, Yu. I. React. Kinet. Catal. Lett. 1982, 21, 249-254.

⁽¹¹⁾ Budge, J. R.; Lücke, B. F.; Gates, B. C.; Toran, J. J. Catal. 1985, 91, 272-282

⁽¹²⁾ Iwasawa, Y.; Yamada, M. J. Chem. Soc., Chem. Commun. 1985, 675-676.

 ⁽¹³⁾ Churchill, M. R.; Bueno, C.; Hsu, W. L.; Plotkin, J. S.; Shore, S. G.
 Inorg. Chem. 1982, 21, 1958–1963.
 (14) Geoffroy, G. L.; Fox, J. R.; Burkhardt, E.; Foley, H. C.; Harley, A.

D.; Rosen, R. Inorg. Synth. 1982, 21, 58-66.

⁽¹⁵⁾ Chini, P.; Colli, L.; Peraldo, M. Gazz. Chim. Ital. 1960, 90, 1005-1020.